Casio ALGEBRA FX 2.0 Manual Calculations Instrukcja Użytkownika

Przeglądaj online lub pobierz Instrukcja Użytkownika dla Kalkulatory, organizery Casio ALGEBRA FX 2.0 Manual Calculations. Casio ALGEBRA FX 2.0 Manual Calculations User Manual Instrukcja obsługi

  • Pobierz
  • Dodaj do moich podręczników
  • Drukuj

Podsumowanie treści

Strona 1 - Manual Calculations

19990401Manual Calculations2-1 Basic Calculations2-2 Special Functions2-3 Specifying the Angle Unit and Display Format2-4 Function Calculations2-5 Num

Strona 2 - 2-1 Basic Calculations

19990401u To store a functionExample To store the function (A+B) (A–B) as function memory number 1(av(A)+al(B))(av(A)-al(B))K6(g)5(FMEM)b(Store)bwu To

Strona 3 - Display Range

199904012-2-4Special Functionsu To delete a functionExample To delete the contents of function memory number 1AK6(g)5(FMEM)b(Store)bw•Executing the st

Strona 4 - Basic Calculations

19990401kkkkk Answer FunctionThe Answer Function automatically stores the last result you calculated by pressingw(unless the w key operation results i

Strona 5

19990401k StacksThe unit employs memory blocks, called stacks, for storage of low priority values andcommands. There is a 10-level numeric value stack

Strona 6

19990401k Using MultistatementsMultistatements are formed by connecting a number of individual statements for sequentialexecution. You can use multist

Strona 7

199904012-3 Specifying the Angle Unit and DisplayFormatBefore performing a calculation for the first time, you should use the SET UP screen tospecify

Strona 8 - 2-2 Special Functions

19990401u To specify the number of significant digits (Sci)Example To specify three significant digits2(Sci) dwPress the function key that corresponds

Strona 9 - Function Memory [OPTN]-[FMEM]

199904012-4 Function Calculationsk Function MenusThis calculator includes five function menus that give you access to scientific functions notprinted

Strona 10 - Special Functions

19990401uuuuu Hyperbolic Calculations (HYP) [OPTN]-[HYP]•{sinh}/{cosh}/{tanh} ... hyperbolic {sine}/{cosine}/{tangent}•{sinh–1}/{cosh–1}/{tanh–1} ...

Strona 11

19990401kkkkk Trigonometric and Inverse Trigonometric Functions•Be sure to set the angle unit before performing trigonometric function and inversetrig

Strona 12

199904012-1-1Basic Calculations2-1 Basic Calculationskkkkk Arithmetic Calculations•Enter arithmetic calculations as they are written, from left to rig

Strona 13 - 19990401

19990401k Logarithmic and Exponential Functions•Be sure to specify Comp for Mode in the SET UP screen.Example Operationlog 1.23 (log101.23) = 8.990511

Strona 14

19990401k Hyperbolic and Inverse Hyperbolic Functions•Be sure to specify Comp for Mode in the SET UP screen.Example Operationsinh 3.6 = 18.28545536 K6

Strona 15 - = 0 to 9)

19990401k Other Functions•Be sure to specify Comp for Mode in the SET UP screen.Example Operation + = 3.65028154 !x( )2+!x( )5w25 = 1.755317302!x(

Strona 16

19990401k Random Number Generation (Ran#)This function generates a 10-digit truly random or sequentially random number that is greaterthan zero and le

Strona 17 - 2-4 Function Calculations

199904012-4-8Function Calculationsk Coordinate Conversionuuuuu Rectangular Coordinatesuuuuu Polar Coordinates•With polar coordinates, θ can be calcula

Strona 18 - Function Calculations

199904012-4-9Function Calculationsn! n!nPr = ––––– nCr = –––––––(n – r)! r! (n – r)!k Permutation and Combinationuuuuu Permutationuuuuu Combination•Be

Strona 19

19990401kkkkk Fractions•Fractional values are displayed with the integer first, followed by the numerator and thenthe denominator.•Be sure to specify

Strona 20

199904012-4-11Function Calculationsk Engineering Notation CalculationsInput engineering symbols using the engineering notation menu.•Be sure to specif

Strona 21

199904012-5 Numerical CalculationsThe following describes the items that are available in the menus you use when performingdifferential/ quadratic dif

Strona 22

19990401k Differential Calculations [OPTN]-[CALC]-[d /dx]To perform differential calculations, first display the function analysis menu, and then inpu

Strona 23

199904012-1-2Basic Calculations*1Displayed values are rounded off to the placeyou specify.kkkkk Number of Decimal Places, Number of Significant Digits

Strona 24

19990401Example To determine the derivative at point x = 3 for the functiony = x3 + 4x2 + x – 6, with a tolerance of “tol” = 1E – 5Input the function

Strona 25

19990401u Applications of Differential Calculations•Differentials can be added, subtracted, multiplied and divided with each other.Therefore:•Differen

Strona 26 - (Conversion to fraction)

19990401kkkkk Quadratic Differential Calculations [OPTN]-[CALC]-[d2/dx2]After displaying the function analysis menu, you can input quadratic different

Strona 27

19990401u Quadratic Differential Applications•Arithmetic operations can be performed using two quadratic differentials.Therefore: f ''(a) +

Strona 28 - 2-5 Numerical Calculations

19990401kkkkk Integration Calculations [OPTN]-[CALC]-[∫dx]To perform integration calculations, first display the function analysis menu and then input

Strona 29 - Numerical Calculations

19990401Example To perform the integration calculation for the function shownbelow, with a tolerance of “tol” = 1E - 4∫15 (2x2 + 3x + 4) dxInput the f

Strona 30 - E-14 or less

19990401Note the following points to ensure correct integration values.(1) When cyclical functions for integration values become positive or negative

Strona 31

19990401kkkkk Σ Calculations [OPTN]-[CALC]-[Σ ]To perform Σ calculations, first display the function analysis menu, and then input the valuesshown in

Strona 32

19990401u Σ Calculation Applications•Arithmetic operations using Σ calculation expressionsExpressions:Possible operations: Sn + Tn, Sn – Tn, etc.•Arit

Strona 33

199904012-5-12Numerical Calculationskkkkk Maximum/Minimum Value Calculations [OPTN]-[CALC]-[FMin]/[FMax]After displaying the function analysis menu, y

Strona 34 - f (x)dx is calculated

199904012-1-3Basic CalculationsExample 200 ÷ 7 × 14 = 400Condition Operation Display200/7*14w 4003 decimal places u3(SET UP)cccccccccc1(Fix)dwiw 400.0

Strona 35

199904012-5-13Numerical Calculations#In the function f(x), only X can be used as avariable in expressions. Other variables (Athrough Z, r, θ) are trea

Strona 36

199904012-6 Complex Number CalculationsYou can perform addition, subtraction, multiplication, division, parentheses calculations,function calculations

Strona 37

199904012-6-2Complex Number Calculationskkkkk Absolute Value and Argument [OPTN]-[CPLX]-[Abs]/[Arg]The unit regards a complex number in the format Z =

Strona 38

19990401kkkkk Conjugate Complex Numbers [OPTN]-[CPLX]-[Conjg]A complex number of the format a + bi becomes a conjugate complex number of the formata –

Strona 39

19990401kkkkk Polar Form and Rectangular Transformation [OPTN]-[CPLX]-['''''re^θi]Use the following procedure to transform a

Strona 40

199904012-7 Binary, Octal, Decimal, and HexadecimalCalculationsYou can use the RUN • MAT Mode and binary, octal, decimal, and hexadecimal settings top

Strona 41 - Complex Number Calculations

19990401• The following are the calculation ranges for each of the number systems.Binary ValuesPositive: 0 < x < 111111111111111Negative: 100000

Strona 42 - Real number axis

19990401kkkkk Selecting a Number SystemYou can specify decimal, hexadecimal, binary, or octal as the default number system usingthe set up screen. Aft

Strona 43

19990401Example 2 To input and execute 1238 × ABC16, when the default number system isdecimal or hexadecimalu3(SET UP)2(Dec)iA1(d~o)e(o)bcd*1(d~o)c(h)

Strona 44

19990401Example 2 To display the result of “368 or 11102” as an octal valueu3(SET UP)5(Oct)iAdg2(LOGIC)e(or)1(d~o)d(b)bbbawExample 3 To negate 2FFFED1

Strona 45 - Calculations

199904012-1-4Basic Calculations7 Abbreviated multiplication format in front of Type B functions2 , A log2, etc.38 Permutation, combination nPr, nCr9

Strona 46

199904012-8-1Matrix Calculations2-8 Matrix CalculationsFrom the Main Menu, enter the RUN • MAT Mode, and press 1(MAT) to perform Matrixcalculations.26

Strona 47 - 2 + 110102

19990401k Inputting and Editing MatricesPressing 1(MAT) displays the matrix editor screen. Use the matrix editor to input and editmatrices.• {DIM} ..

Strona 48 - u Negative Values

19990401u To input cell valuesExample To input the following data into Matrix B :123456c (Selects Mat B.)wbwcwdwewfwgw(Data is input into the highlig

Strona 49 - Number System Transformation

19990401uDeleting MatricesYou can delete either a specific matrix or all matrices in memory.u To delete a specific matrix1. While the Matrix list is

Strona 50 - 2-8 Matrix Calculations

19990401k Matrix Cell OperationsUse the following procedure to prepare a matrix for cell operations.1. While the Matrix list is on the display, use f

Strona 51 - Creating a Matrix

19990401uuuuu To calculate the scalar product of a rowExample To calculate the scalar product of row 2 of the following matrix,multiplying by 4 :12M

Strona 52 - Matrix Calculations

19990401u To add two rows togetherExample To add row 2 to row 3 of the following matrix :12Matrix A = 34562(R-OP)e(Row+)Specify number of row to be ad

Strona 53 - Deleting Matrices

19990401u To insert a rowExample To insert a new row between rows one and two of the followingmatrix :12Matrix A = 3456c4(R • INS)u To add a rowExamp

Strona 54 - Row Calculations

199904012-8-9Matrix CalculationsuColumn Operations• {C • DEL} ... {delete column}• {C • INS} ... {insert column}• {C • ADD} ... {add column}u To del

Strona 55

19990401u To add a column Example To add a new column to the right of column 2 of the followingmatrix :12Matrix A = 3456e6(g)3(C • ADD)k Modifying Ma

Strona 56 - Row Operations

199904012-1-5Basic Calculations# Other errors can occur during programexecution. Most of the calculator’s keysare inoperative while an error message i

Strona 57

19990401u Matrix Data Input Format [OPTN]-[MAT]-[Mat]The following shows the format you should use when inputting data to create a matrix usingthe Mat

Strona 58 - Column Operations

19990401u To input an identity matrix [OPTN]-[MAT]-[Ident]Use the Identity command to create an identity matrix.Example 2 To create a 3 × 3 identity m

Strona 59

19990401uModifying Matrices Using Matrix CommandsYou can also use matrix commands to assign values to and recall values from an existingmatrix, to fil

Strona 60 - Matrix name

19990401uuuuu To fill a matrix with identical values and to combine two matrices into asingle matrix[OPTN]-[MAT]-[Fill]/[Augmnt]Use the Fill command t

Strona 61

19990401uuuuu To assign the contents of a matrix column to a list[OPTN]-[MAT]-[M→List]Use the following format with the Mat→List command to specify a

Strona 62

19990401k Matrix Calculations [OPTN]-[MAT]Use the matrix command menu to perform matrix calculation operations.u To display the matrix commands1. Fro

Strona 63

19990401uMatrix Arithmetic Operations [OPTN]-[MAT]-[Mat]Example 1 To add the following two matrices (Matrix A + Matrix B) :A =11B =2321 21AK2(MAT)b(Ma

Strona 64

19990401uDeterminant [OPTN]-[MAT]-[Det]Example Obtain the determinant for the following matrix :123Matrix A = 456–1 –2 0K2(MAT)d(Det)2(MAT)b(Mat)av(A)

Strona 65

19990401uMatrix Inversion [OPTN]-[MAT]-[x–1]Example To invert the following matrix :Matrix A =1234K2(MAT)b(Mat)av(A)!) (x–1) wuSquaring a Matrix [OPTN

Strona 66 - Number of rows and columns

19990401uRaising a Matrix to a Power [OPTN]-[MAT]-[ ]Example To raise the following matrix to the third power :Matrix A =1234K2(MAT)b(Mat)av(A)MdwuDe

Strona 67

19990401•When you try to perform a calculation that causes memory capacity to be exceeded(Memory ERROR).•When you use a command that requires an argum

Strona 68

19990401

Strona 69 - Maximum Integer of a Matrix

199904012-2 Special Functionskkkkk Calculations Using VariablesExample Operation Display193.2aav(A)w 193.2193.2 ÷ 23 = 8.4 av(A)/23w 8.4193.2 ÷ 28 = 6

Strona 70

19990401u To display the contents of a variableExample To display the contents of variable AAav(A)wu To cl ear a variableExample To clear variable AAa

Komentarze do niniejszej Instrukcji

Brak uwag